annual review 3 – www.savvyessaywriters.net

annual review 3 – www.savvyessaywriters.net

 

Hello

Attached is the assignment instructions and the grading scale. Please let me know if you need additional resources. Thank you.

Savvy Essay Writers

Why is whether or not human nature exists an important question to answer? – Savvy Essay Writers | savvyessaywriters.net

Why is whether or not human nature exists an important question to answer? – Savvy Essay Writers | savvyessaywriters.net

Early in his essay, Toward A Universal Ethics, Michael Gazzaniga considers whether human nature exists. He quotes authorities who deny that there are instincts or anything like a human nature and assert that the brain has no predisposition but is adaptable to “a full range of behaviors.” Argue a case FOR human nature. Consider the role recent studies of brain physiology might play in this debate. Why is whether or not human nature exists an important question to answer?

 

“Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!
Use Discount Code “Newclient”for a 15% Discount!”

We have Walden University and Capella University nursing practitioners!


Buy Custom Nursing Papers

ORDER NOW 

Composition Assignment – Savvy Essay Writers | savvyessaywriters.net

Composition Assignment – Savvy Essay Writers | savvyessaywriters.net

This assignment is your opportunity to reach a public audience through one of the following public genres:
    Presentation (page 202)
    News Article (page 215)
    Editorial or Op-Ed (page 225)
    Advertisement (page 232)
    Wikipedia Entry (page 239)
    Photo Essay (page 245)
    Graphic Memoir (page 251)
    Fairy Tale (page 266)
You can choose the genre, and you will need to student the rhetorical situation and genre expectations for your chosen genre in Chapter 9, where you will find helpful analysis of the genre and a roadmap for creating a composition of your own in that genre.
What is my topic?
That is up to you. Your topic should be relevant to a public audience, considering we are working in public genres. The genre should be appropriate to the topic (as well as to the audience and purpose) you choose. If you dont have anything to write about, post a question in the Class Caf, and we can help.
What are the requirements?
Since there are eight different genres to choose from, there are eight different sets of requirements. In addition to the rhetorical situation and genre expectations and conventions for your genre of choice that are explained in Chapter 9, you must meet the following requirements:
    Presentation: Compose a 5- to 7-minute TEDTalk-style presentation with three or more visuals to a public audience. Submit the script and visuals as your final draft. EXTRA CREDIT: Record and submit a video of your speech with your visuals behind or beside you in the screenyou must be on the screen the whole time. Watch and study a few TEDTalks to see how this genre works.
    News Article: Compose a 700- to 800-word news article on a local topic. Write for your community or your campus. News articles are purely objective informative stories of facts and events. Read your local newspapers or community newsletters for ideas.
    Editorial or Op-Ed: Compose a 750- to 1000-word argument about a current debate going in your community. The purpose here is to persuade, not to inform or to complain. Read editorials and op-eds for ideas. Pick a topic that is personal to you.
    Advertisement: Compose a series of three print advertisements for a product of your choicethese three ads must share the same slogan and general theme (like the classic Got Milk? ads.) Each ad must effectively target its audience and persuade them to purchase the product. A TWIST: Instead of selling something, you can create a series of Public Service Announcements, which seek to inform the public about a problem or persuade the public to stop or change a behavior or adopt a new one. In short, a public service ad does not sell anything: it aims to serve the public.
    Wikipedia Entry: Compose a 1200- to 1500-word Wikipedia entry for a topic that doesnt currently have an entry on Wikipedia or for a current entry that is sorely lacking in content. You should pick a topic that you know well, and you should link the facts to reputable web sources your readers can search for themselves. Study other Wikipedia entries to see how they are organized and developed.
    Photo Essay: Compose a photo essay with no less than 15 photos, each with helpful captions, that work to tell a story that evokes sympathy from and/or persuades the target audience.
    Graphic Memoir: Compose a graphic memoir with no less than 12 detailed frames (with text and hand-drawn or computer-generated images). A graphic memoir will tell ONE story from your life, not your entire life story. Think of this as a short but significant chapter in your life, not your whole life. The story should have a plota storyline with meaningful conflict that reaches some resolution in the end.
    Fairy Tale: Compose a 1000- to 1200-word fairy tale in which a generic character defined by one trait (old man, poor woman, silly boy, vain girl, etc) experiences something that teaches a lesson. Consider all the genre elements discussed in Chapter 9.

ORDER NOW 

Statistics for the Sciences

Go to TOC
Statistics for the Sciences
Charles Peters

Go to TOC
Contents
1 Background 6 1.1 Populations, Samples and Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Types of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Random Experiments and Sample Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Computing in Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Descriptive and Graphical Statistics 11 2.1 Location Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 The Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 The Median and Other Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.3 Trimmed Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.4 Grouped Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.5 Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.6 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.7 The Five Number Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.8 The Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Measures of Variability or Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 The Variance and Standard Deviation . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 The Coefficient of Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 The Mean and Median Absolute Deviation . . . . . . . . . . . . . . . . . . . . 17 2.2.4 The Interquartile Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.5 Boxplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Jointly Distributed Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.1 Side by Side Boxplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.2 Scatterplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.3 Covariance and Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3 Probability 28 3.1 Basic Definitions. Equally Likely Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 Combinations of Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1

Go to TOC
CONTENTS 2
3.3 Rules for Probability Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 Counting Outcomes. Sampling with and without Replacement . . . . . . . . . . . . . 32
3.4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5 Conditional Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.1 Relating Conditional and Unconditional Probabilities . . . . . . . . . . . . . . 36 3.5.2 Bayes’ Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Independent Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.6.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7 Replications of a Random Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4 Discrete Distributions 40 4.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 Discrete Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3 Expected Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.4 Bernoulli Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.1 The Mean and Variance of a Bernoulli Variable . . . . . . . . . . . . . . . . . . 44 4.5 Binomial Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.1 The Mean and Variance of a Binomial Distribution . . . . . . . . . . . . . . . . 48 4.5.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Hypergeometric Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.6.1 The Mean and Variance of a Hypergeometric Distribution . . . . . . . . . . . . 51
4.7 Poisson Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.7.1 The Mean and Variance of a Poisson Distribution . . . . . . . . . . . . . . . . 54 4.7.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.8 Jointly Distributed Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.8.1 Covariance and Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.9 Multinomial Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.9.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5 Continuous Distributions 62 5.1 Density Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Expected Values and Quantiles for Continuous Distributions . . . . . . . . . . . . . . 67
5.2.1 Expected Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.2.2 Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.2.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Uniform Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.4 Exponential Distributions and Their Relatives . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.1 Exponential Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4.2 Gamma Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.4.3 Weibull Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5 Normal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.5.1 Tables of the Standard Normal Distribution . . . . . . . . . . . . . . . . . . . . 80 5.5.2 Other Normal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.5.3 The Normal Approximation to the Binomial Distribution . . . . . . . . . . . . 83

Go to TOC
CONTENTS 3
5.5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6 Joint Distributions and Sampling Distributions 85 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.2 Jointly Distributed Continuous Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2.1 Mixed Joint Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.2.2 Covariance and Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.2.3 Bivariate Normal Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Independent Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.3.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4 Sums of Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6.4.1 Simulating Random Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5 Sample Sums and the Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . 98 6.5.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.6 Other Distributions Associated with Normal Sampling . . . . . . . . . . . . . . . . . . 103 6.6.1 Chi Square Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.6.2 Student t Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.6.3 The Joint Distribution of the Sample Mean and Variance . . . . . . . . . . . . 108 6.6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7 Statistical Inference for a Single Population 110 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.2 Estimation of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2.1 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 7.2.2 Desireable Properties of Estimators . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.3 Estimating a Population Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 7.3.1 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 7.3.2 Small Sample Confidence Intervals for a Normal Mean . . . . . . . . . . . . . . 115 7.3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.4 Estimating a Population Proportion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7.4.1 Choosing the Sample Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.4.2 Confidence Intervals for p . . . . . . . . . . . . . . . . . . . . . . . . . ….